Publications

  1. Pahari, N.P., On Certain Topological Structures of Banach Space Valued Paranormed Orlicz Sequence Space, Proceedings of National Conference of Mathematics and its Applications (NCMA – 2017), May 2017 (p.66 – 71).
  2. Pahari, N.P.,On Certain Linear Structures of Bounded Vector-Valued Sequence Space on Product Normed Space, Journal of Advanced College of Engineering and Management, Volume – 2, 2016.
  3. Pahari, N.P., On Certain Topological Structures of Banach Space Valued Paranormed Sequence Space  ∞ (( S, || .|| ) , Φ, ū ) Defined by Orlicz Function, Journal of Rajasthan Academy of Physical Sciences, Volume – 13, Number 1, March 2014 (p.51–66).
  4. Pahari, N.P., On Certain Topological Structures of Summable Paranormed Sequence Space Defined in Two-Normed Space, Journal of Institute of Science and Technology, Volume–19, Number 2, 2014 ( p.135–140).
  5. Pahari, N.P., On Locally Convex Topological Vector Space Valued Null Function Space c0 ( ST, Φ, ξ, ) Defined by Semi Norm and Orlicz Function, Journal of Institute of Science and Technology, Volume–19, Number 1, January 2014 (p.62–68).
  6. Pahari, N.P., Some Classical Sequence Spaces and their Topological Structures, Journal of Advanced College of Engineering and Management, Volume – 1, 2015.
  7. Pahari, N.P., On 2– Normed Space Valued Orlicz Space ∞ (( S, ||.,.||), Φ, w̄ ) of Bounded Sequences and its Topological Structure, International Journal of Scientific and Innovative Mathematical Research (IJSIMR), ISSN : 2347–3142, Volume – 1, Issue 2, February 2014 (p. 171–179).
  8. Pahari, N.P., Topological Structures Of Some Basic Sequence Spaces and Concept of Duals, TRMC Journal, ISSN: 2091–0967, Volume – 3, January 2015 (p.11–15).
  9. Pahari, N.P., On Normed Space Valued Total Paranormed Orlicz Space of Null Sequences and its Topological Structures, International Journal of Mathematics Trends and Technology, http://www.ijmttjournal.org, ISSN: 2231–5373, Volume – 6, February 2014 (p.105–112).
  10. Pahari, N.P., On Certain Topological Properties of Normed Space Valued Null Function Space c0 ( S, ( E, || . || ), ξ, ) and its Paranormed Structure, Nepal Journal of Science and Technology, Volume – 15, Number –1, 2014 (p.121–128).
  11. Srivastava, J.K. and Pahari, N.P., On Certain Topological Structures of Product Normed Space Valued Paranormed Space of Summable Sequences, Journal of Institute of Science and Technology, Volume – 19, Number – 1, 2014 (p.25–29).
  12. Pahari, N.P., On Certain Topological Structures of Normed Space Valued Orlicz Function Space SX, (Y, || . ||), Φ, ), Nepal Journal of Integrated Sciences, ISSN: 2091–0967, Volume – 5, January 2014 (p.28–34).
  13. Pahari, N.P., On Certain Structures of Normed Space Valued Summable Sequences, The Journal of Knowledge and Innovation, ISSN: 2350–8884, Volume – 2, Number – 1, March 2014 ( p.75–79).
  14. Pahari, N.P., On Certain Topological Structures of Normed Space Valued Generalized Orlicz Function Space, International Journal of Scientific, Engineering and Research (IJSER), Volume – 2, Issue –1 , January 2014 (p.61–66).
  15. Pahari, N.P., Study of Topological Structures of Banach Space Valued Total Paranormed Sequence Space ( c0X, || . ||, λ̄, p̄ ), ) and its Extension ( c0X, M, || . ||, λ̄p̄ ), ) Defined by Orlicz Function, Yeti Journal of Mathematics, Volume – 2, Number – 1, August 2013 (p.20–34).
  16. Pahari, N.P., On Certain Topological Properties of Double Paranormed Null Sequence Space, International Journal of Engineering Research & Technology (IJERT), ISSN: 2278–0181, Volume – 3, Issue 3, March 2014.
  17. Pahari, N.P., On Normed Space Valued Paranormed Orlicz Space of Bounded Functions and its Topological Structures, International Journal of Science and Research (IJSR), ISSN: 2319–7064, Volume – 3, Issue –2, February 2014 (p.141–146).
  18. Pahari, N.P., On Certain Topological Structure of Normed Space Valued Total Paranormed Double Sequence Space ((( Xmn, ||. , .||mn ), γ̄, ū ), Tγ,u ), Investigations of Mathematical Sciences, ISSN: 2250–1436, Volume – 4, Number –1, 2014 (p.1–10).
  19. Pahari, N.P., On Certain Topological Structures of Normed Space Valued Function Space ι X, E, λ), Mathematics Education Forum, Issue 35, Volume – I, February, 2014 (p.44–48).
  20. Pahari, N.P., On Locally Convex Topological Vector Space Valued Paranormed Function Space (  ( X, Y, Φ, ξ, w, ), HU ) Defined by Orlicz Function, Nepal Journal of Science Science and Technology, Volume – 14, Number –2, December 2013 (p.109–116).
  21. Pahari, N.P., On Banach Space Valued Orlicz Function Space  ( X, U, || . ||, ξ, λ, ) and its Generalized Form  ( X, U, || . ||, ξ ), Kathmandu University Journal of Science, Engineering and Technology, Volume – 9, Number – 2, December 2013 (p.59–68).
  22. Pahari, N.P., On a Space of Entire Vector Sequences and its Generalized Forms by Orlicz Function, Journal of Institute of Science and Technology, Volume –18, Number – 2, October 2013 (p.53–61).
  23. Pahari, N.P., On Certain Topological Structures of Total Paranormed Sequence Space (  ( X, ᾱ, , ||. , .|| ), ) Defined on 2– Banach Space, Himalayan Scientific Journal, Volume 7, July 2013 (p.52–56).
  24. Pahari, N.P., On 2 – Normed Space Valued Paranormed Null Sequence Space ( c0 ( S, ᾱ, , ||. , .|| ), ), BIBECHANA, Volume – 10, 2014 (p.20–30).
  25. Pahari, N.P., Some Results on Locally Convex Topological Vector Space Valued Function Space c0 ( PU , X, Y, λ, ) Defined by Semi Norm and its Paranormed Extension c0PU , X, Yλ, p, ), KMC Journal, Volume – 1, Number – 1, December 2013 (p.78– 89).
  26. Pahari, N.P., On Certain Topological Structures of Orlicz Space ( S (( X, ||.|| ), Φ, ᾱ, ū ), ) of Vector Valued Sequences, International Journal of Mathematical Archive, Volume – 4, Number –11, November 2013 (p. 231–241).
  27. Pahari, N.P., On Certain Topological Structures of 2– Normed Space Valued Orlicz Space c0 (( S, ||.,.|| ), Φ, ū ) of Null Sequences, Journal of Global Research in Mathematical Archives, ISSN: 2320–5822, Volume – 1, Number – 10, October 2013.
  28. Pahari, N.P., Vector– Valued Sequence Space on Product Normed Space, Mathematics Education Forum, Issue 34, October 2013 (p.50–56).
  29. Srivastava, J.K. and Pahari, N.P., On 2– Banach Space Valued Paranormed Sequence Space c0 ( X, M, ||. , .||, λ̄p̄ ) Defined by Orlicz Function, Journal of Rajasthan Academy of Physical Sciences, Volume–12, No.3, September 2013 (p.317–336).
  30. Pahari, N.P., On Certain Topological Structures of 2 – Banach Space Valued Paranormed Sequence Space ι (( S, ||. , .||), ξ̄, ū )’, International Journal of Mathematics and Computer Research, ISSN: 2320–7167, Volume – 2, Issue – 1, January 2013 (p.310 – 315).
  31. Srivastava, J.K. and Pahari, N.P., On Vector Valued Paranormed Sequence Space c0 ( X, Mλ̄p̄ ) Defined by Orlicz Function, Journal of Rajasthan Academy of Physical Sciences (JRAOPS), Volume –11, Number – 2, 2012 (p.243–251).
  32. Pahari, N.P., On Vector Valued Sequence Space c0 ( X, ρ̄, , ||.,.|| ) Defined by 2–Norm, Himalayan Scientific Journal, Volume – 5, July 2012 (p.52–56).
  33. Pahari, N.P., On Sequence Space ιM ( Φ, X, λ̄, ||.,.|| ) defined by Orlicz Function and 2– Norm, Proceeding of National Conference on Mathematics, 2012 ( p.68–76).
  34. Srivastava, J.K. and Pahari, N.P., On 2–Normed Space Valued Sequence Space ιM ( X, ||.,.||, λ̄, p̄ ) Defined by Orlicz Function, Proceedings of Indian Society of Mathematics and Mathematical Sciences (PISMAMS), Volume – 6, 2011 (p.1–15).
  35. Pahari, N.P., On Locally Convex Space Valued Function Spaces c0 ( X, E, M, λ, p ), c ( X, E, M, λ, p ),  ( X, E, M, λ, p ) Defined by Orlicz Function, The Nepali Mathematical Science Report, Volume – 31, 2011 (p.29–40).
  36. Pahari, N.P., On Vector Valued Paranormed Sequence Space  ( X, , M, λ̄, p̄, L ) Defined by Orlicz Function, Nepal Journal of Science Science and Technology, Volume – 12, 2011 (p.252 – 259).
  37. Pahari, N.P., Some Results on Orlicz Space of Entire Sequences, Mathematics Education Forum, Issue 29, 2011 (p.28 – 31).
  38. Srivastava, J.K. and Pahari, N.P., On Banach Space Valued Paranormed Sequence Space ιM ( X, λ̄, p̄, L ) Defined by Orlicz Function, South East Asian Journal of Mathematics and Mathematical Sciences, Volume –10, Number –1, 2010 (p.45 – 57).